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Conservation of potential vorticity in Eulerian fluids reflects particle interchange symmetry in the La-
grangian fluid version of the same theory. The algebra associated with this symmetry in the shallow-
water equations is studied here, and we give a method for truncating the degrees of freedom of the
theory which preserves a maximal number of invariants associated with this algebra. The finite-
dimensional symmetry associated with keeping only N modes of the shallow-water flow is SU(V). In the
limit where the number of modes goes to infinity (N — o) all the conservation laws connected with po-
tential vorticity conservation are recovered. We also present a Hamiltonian which is invariant under
this truncated symmetry and which reduces to the familiar shallow-water Hamiltonian when N— .
All this provides a finite-dimensional framework for numerical work with the shallow-water equations
which preserves not only energy and enstrophy but all other known conserved quantities consistent with
the finite number of degrees of freedom. The extension of these ideas to other nearly two-dimensional

flows is discussed.

PACS number(s): 47.10.+g, 47.15.Ki, 92.90.+x, 02.20.Tw

I. INTRODUCTION

Many geophysical problems are naturally decomposed
into a many-layered approximation with each layer
governed by the shallow-water equations [1]. These equa-
tions take the fluid density to be consistent in each layer,
and because the horizontal dimensions are assumed to be
much larger than the vertical ones, hydrostatic balance is
taken to hold in each layer separately. Vertical variations
in each layer are ignored in the two-dimensional horizon-
tal velocity v(x,?)=[v(x,p,t),v,(x,y,t)][x=(x,y)] and
incompressibility

dv;(x,z,1)

. +
V-v(x,t) %

(1)

determines the vertical velocity v,(x,z,¢). Using local hy-
drostatic balance, the pressure is eliminated in terms of
the thickness of the vertical layer & (x,t). h(x,t) becomes
the third dependent dynamical variable for the reduced
system.

The evolution equations for v(x,z) and h(x,t) serve
both as a useful model for the dynamics in a thin layer of
fluid and as an important ingredient in more complicated
models of the whole atmosphere or ocean [2]. In com-
plex models which attempt to represent the full dynamics
of the atmosphere, for example, one must add to the basic
shallow-water equations additional dynamics to describe
radiative transfer, internal waves, cloud formation,
relevant chemistry, etc. Whatever the goal of the dynam-
ics of the shallow-water equations, if one is to solve these
equations, some form of truncation of the infinite degrees
of freedom must be made to progress numerically. Trun-
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cations directly in Eulerian or Lagrangian configuration
space or in the dual Fourier space fail to preserve all the
conservation laws respected by the underlying particle in-
terchange symmetry of the Lagrangian theory which ex-
hibits itself in the conservation of potential vorticity.
These latter remarks, of course, apply only when the
shallow water flow is inviscid, as we shall assume
throughout this paper. We shall have a few remarks to
make at the end of this paper about the use of our results
for the case with friction.

In this paper we take up the much studied subject of
shallow-water equations with the goal of providing a
truncation of the degrees of freedom from infinity to a
finite number using a method which preserves the max-
imum number of conserved quantities consistent with this
reduction in the number of degrees of freedom. When
this number returns to infinity, that is, when the trunca-
tion is removed, the theory preserves all the quantities as-
sociated with potential vorticity conservation. Our work
takes place in the Lagrangian formulation of the theory.
The truncation is made in the Fourier space of variables
dual to the Lagrangian labels of fluid particles. The alge-
bra associated with the symmetry of particle interchange
is altered as part of the truncation, and the finite number
of Casimir invariants of the new algebra, which is su(N)
and thus familiar, replace the infinite number of con-
served quantities following from potential vorticity con-
servation. In the limit N — oo, the usual conserved quan-
tities are recovered.

The methods we use derive from two sources. One is
the work by Fairlie and Zachos [3] on finite algebras in
string theory and the other is an application of those
methods to the two-dimensional Euler equations indepen-
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dently invented by Rouhi [4] and Zeitlin [5]. The latter
application may be quite interesting in other geophysical
applications where two-dimensional Eulerian flows are
studied, but we have not pursued that line of investiga-
tion. We have analyzed the shallow-water equations, as
presented here, both for their interest as indicated, and
also because they have numerous useful formal similari-
ties with internal wave dynamics and with surface wave
physics. Our work here is also in planar geometries. The
extension to flows on a sphere, while algebraically com-
plicated, is more or less straightforward in concept as
seen in the paper of Hoppe [6].

The shallow-water equations and their numerical solu-
tion using various truncations have become a subject of
renewed interest of late because of the effort to place
these equations and their more complex forms on parallel
processing machines [7]. The goal of that effort is to
build numerically efficient climate models for investiga-
tions of very long times (thousands of simulated years)
and/or issues requiring very high spatial resolution. We
expect that the truncation presented here, which by its
formulation preserves as much of the original symmetry
as possible of the structure of the shallow-water equa-
tions, will prove an attractive alternative to straightfor-
ward finite-element, discrete-spatial-grid, or spectral
methods for these equations.

In Sec. II we review the shallow-water equations in Eu-
lerian and Lagrangian formulation and write down the
algebraic structure associated with particle interchange
symmetry. Section III is devoted to the su(/N) truncation
of the theory in Lagrangian formulation and also presents
the truncated Hamiltonian for the shallow-water flow.
Section IV has our comments about further uses of our
observations in other problems of geophysical interest
and contains the summary of our present work.

II. SHALLOW-WATER THEORY

A. Equations of motion and symmetry

The Eulerian shallow-water equations govern the evo-
lution of a two-dimensional horizontal velocity v(x,¢) in a
fluid of vertical thickness 4 (x,t¢) via the familiar evolu-
tion equations [1]

av(x,t)

Y +v(x,t) Vvix,t)=—gVh(x,t), (2)
Qh—g%%—v-[h(x v(x,0)]=0, 3)

where g is the gravitational constant and V=[4,,3,] is
the horizontal gradient. If the frame is rotating about the
z axis at angular velocity f /2, a term v(x,t) XZf(x) ap-
pears in the equation for v(x,?). As indicated above,
these equations follow from the three-dimensional Euler
equations of a thin, homogeneous fluid with hydrostatic
balance determining the pressure p (x,z,¢) in terms of the
thickness p (x,z,t)=g [h(x,t)—z].
The total energy

Hg(v,h)=1 [ d [|v(x,0)|*+gh (x,1)*] 4)

is conserved by solutions to these equations, and the Eu-

lerian potential vorticity

_ 2-VXvi(x,t)
qE(x’t) h(x,t) (5)
satisfies
0qy(x,1)
—q%t-+v(x,z)-qE(x,t)=o . ©)
This means that
[ d% h(x,0)G (gp(x,1)) @)

is time independent for arbitrary G (gp).

These conservation laws arise from the particle inter-
change symmetry exhibited by the canonical or Lagrang-
ian formulation of the theory. In Lagrangian formula-
tion, the dynamical variables are the particle position
Y(r,t) at every particle label r and time and the conju-
gate momentum II(r,z). In terms of these variables the
Hamiltonian reads

HIY, =1 [d%[|0,0P+ed(Y(r,) '],  @®)

where the Jacobian

_a(Y)_aY1 dY, 9dY, 9Y,
T = = %, B, o, or, ©)

has been introduced. In this definition it is possible to
multiply the Jacobian by an arbitrary positive function of
r, which would describe the initial height if the initial
conditions are used as labels: Y(r,0)=r. However, we
prefer to absorb this factor into the definition of the la-
bels and use the so-called mass labels [8], in which this
factor is set to unity.

The evolution in time of any functional
A [Y(r,1),II(r,¢)] follows from Hamiltonian’s equations

94
ot

where we have introduced the canonical Poisson brackets
between functionals 4 [Y,II]and B[Y,II],

{4[Y,I],B[Y,I1]}

={4,H}, (10)

*fdz 34[Y,II] 8B[Y,II]
8Y(r,?) S8I(r,?)
_OB[Y,II] 8A[Y,II] (11
6Y(r,t) 8II(r,t)

The Poisson brackets among the canonical variables
Y(r,t) and II(r,¢) is then given by

{Yo(r,0), g, 1)} =8,58%(r (12)

where «a,8=1,2. Using the Hamiltonian (8) and the
canonical bracket (11), we find that the equations of
motion in the Lagrangian specification are given by

aY,(r,t)  sH
dr  SI(r,¢1) ~I{n0),
13
all,(r,7) SH (13

= — 2
ar 8Y (r,1) 92 AR CUIR
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where we have used the following notation for the Jacobi-
an:

_ _afg)
{f’g}r a(rl’rz) ) (14)

and repeated indices (in this case [3) are summed over.
€45 1s the completely antisymmetric symbol in two dimen-
sions. The reason for the use of this notation will become
clear later. The equations of motion in the Lagrangian
specification can readily be shown to be equivalent to the
more usual Eulerian specification. See Abarbanel and
Holm [9]. We just mention here that J ~! turns out to be
fluid height, and can be shown to satisfy the continuity
equation (3), while the actual Lagrangian equations of
motion (13) are equivalent to the Eulerian momentum
equation (2). Of course the time derivatives in the La-
grangian representation are taken with the label r held
fixed and thus are equivalent to the ‘“total”” or advective
derivative in the Eulerian representation. Also note that
from the first equation it can be seen that the canonical
momentum is simply the fluid particle velocity.

The potential vorticity in the Lagrangian coordinates
takes the form

q(r,t)={I(r,1),Y,(r,0)}, . (15)

Since, as noted above, time derivatives in the Lagrangian
representation are equivalent to advective derivatives in
the Eulerian representation, we now simply have the fol-
lowing conservation law:

dq(r,t)
ot

This can of course also be proven directly using the equa-
tions of motion (13). The integrals

cly,nm]= [d* G(q(r,1) (17

=0. (16)

are clearly constant in time for any G (q). Therefore, the
Eulerian conservation laws follow from the Lagrangian
conservation law.

B. The potential vorticity algebra

The number of conserved quantities in the Lagrangian
specification is clearly infinite since the potential vorticity
is conserved for each value of r. The existence of these
conserved quantities signals the existence of a symmetry
group in this problem, and the conserved quantities are
generators of this symmetry in a sense which we will spell
out in great detail below. These ideas will be well known
to the reader familiar with Hamiltonian theory; however,
our applications will be rather novel and it will be useful
to discuss them from the point of view of the problem at
hand, and also for the benefit of the reader whose
memory of Hamiltonian theory is rusty.

In order to study the symmetry group of the shallow-
water equations in greater detail, it will be useful to take
boundary conditions in r space to be periodic in a square
of size L XL, for all quantities of interest, and work in
the Fourier representation. We introduce Fourier series
as follows: for functions f (r) we write

]

f(r)= 3 g(n)exp[ikn-r] (18)
and the inverse
g(n)= I fdzrf(r exp[ —ikn-r], (19)

where the vectors n,m, ... are composed of integers
n=[n,n,); n,=0,=1,%£2,... and k=27/L. We take
the Fourier decomposition of the canonical variables to
be

Y(r,t) J—EQ(n,t)exp[iKn-r] s

h

(20)
(r,t)= f > P(n,t)explikn-r],

which gives the Poisson brackets in Fourier space

{Qa(n PB m) aBSn, —m ° (21)

Note that in our notation we will often suppress the time
dependence of our dynamical variables, especially when
we are stressing their role as coordinates on phase space
rather than their evolution in time. Using this Fourier
transformed set of canonical variables we have for the po-
tential vorticity

2'rr)

q(r)= Egn)exp[zxn r], (22)

with

{(n)= ¥ nXmP,(m)Q, (n—m)

= > m'XmP,(m)Q,,(

m,m’

m' )8, mim: - (23)

We have defined the quantity nXm=n,m,—n,m; in
this equation, and the normalization for {(n) has been
chosen to make the last formula and many to follow as
simple as possible. Now since g(r) is conserved, so are all
of its Fourier coefficients,

d{(n)
dt

In order to set the stage for what follows we now make
some comments concerning the {(n). The ideas intro-
duced will be explained in further detail in the following
sections. The £(n) can be taken to form a basis for the
generators of the symmetry, in the following sense. Com-
pute the following Poisson brackets, using {(n) as “Ham-
iltonian” and generating a motion in phase space which
we will parametrize by a parameter €

={¢&(n),H}=0 . (24)

Y(re) _
o {Y(r,e),&(n)}
=§717;{Y(r,e), exp(—ikn-1)};
Q[I_(_f’_ﬂz{n(r €),&(n)} :
de o

1 .
ﬁ{ﬂ(r,e), exp(—ikn-r)},
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Consider the first of these expressions. Note that we have
different brackets in the first and second equalities. The
first is our usual canonical bracket in phase space, while
the second is the r-space Jacobian following the notation
introduced in Eq. (14). Of course this latter is also a
“Poisson bracket,” since if one treats r; as “coordinate”
and r, as “momentum,” then the Jacobian is precisely
the Poisson bracket for two-dimensional space (This part-
ly accounts for our use of this notation.) This shows that
a solution of the above system can be written

Y(r,e)=(YoR)(r,e)=Y(R(r,¢€)) , (26)
where R is the solution to the differential equation

drR_ 1 [ 3 3

- _ —ikn-R), (7
de  2mx |3R,’ R, |SP(TiknR) @7)

with R(r,0)=r. This set of two coupled ordinary
differential equations is formally just Hamilton’s equa-
tions in a two-dimensional phase space with (r,r,) as
canonical variables and (1/27k)exp(—ikn-r) as the

Hamiltonian. It is well known that the solution R
preserves area

d(R)

3(r) 1. (28)

All these considerations apply to the canonical momen-
tum II as well. Now any linear combination of the &(n)
is also conserved (in particular we should really consider
the real combinations), therefore the Hamiltonian in Eq.
(27) can be an arbitrary function yy=1(r), since any func-
tion can be expanded in terms of Fourier series on the
periodic square. We may therefore summarize by saying
that the symmetry corresponding to the conservation of
the {(n) is

Y—->YoR, II-IIoR, (29)

where R must satisfy Eq. (28), but is otherwise arbitrary.
This symmetry is often called the particle relabeling sym-
metry, since its physical meaning is precisely a relabeling
of particles that leaves the Jacobian (9) fixed. A few com-
ments are in order here. First, the symmetry operation in
(29) is easily shown to be a canonical transformation on
the (Y,II) variables, consistent with the well-known fact
that solutions of Hamiltonian’s equations [in this case
Eqgs. (25)] generate canonical transformation. Second, it
can be shown that the shallow-water Hamiltonian (8) is
unchanged under the symmetry operation (29). This of
course is the necessary condition for the generators of the
symmetry §(n) to be conserved. Third, the symmetry
operations form a group, since a composition of the
transformations R’o R satisfies (28) if each of R and R’ do
so. We will refer to this group as the particle relabeling
group. These ideas and their relation to the Eulerian for-
mulation of fluid dynamics for compressible fluids are
discussed in further detail, but in more mathematical
language, in the papers of Marsden, Ratiu, and Weinstein
[10,11].

We need to examine further the algebraic properties of
the {(n). This is best done in the Fourier representation.
The following brackets may be computed:
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{{(n),Q0,(m)}=nXmQ,(n+m),
{{(n),P,(m)}=nXmP, (n+m),

(30

and
{¢(n),&{(m)} =nXmé(n+m) . (31)

The last Poisson bracket exhibits the structure of the par-
ticle interchange algebra and shows it be an infinite-
dimensional, noncommutative algebra, as we might ex-
pect since it comes from a continuum set of operations on
label space r given by the symmetry operation (29). This
set of continuum operations translates via the Fourier
transform into a discrete infinity of operations in n space.
Further, the closure of the bracket (31) signals the fact
that the corresponding symmetries form a group as we al-
ready observed above.

Finally in this section we note that the Jacobian (9)
clearly plays a crucial role, so we will Fourier decompose
it also, and record some brackets. The actual motivation
for doing so will become clear as we proceed.

_a(Y)
a(r)

2
(2[4) > p(n)explikn-r], (32)

J(Y(r,¢))

which gives

p(n)=1 3 m'XmQ(m)XQ(m")8, 4.

m,m’

=3 nXmQ;(m)Q,(n—m) . (33)

The Poisson bracket of {(n) and p(m) is then found to be
{{(n),p(m)}=nXmp(m-+n) . (34)

A couple of striking observations here are first, the simi-
larity of structure in the Poisson brackets given in Egs.
(30), (31), and (34), and second, the similarity in the ex-
pressions for the Fourier coefficients of the potential vor-
ticity and the Fourier coefficients of the Jacobian as ex-
pressed in terms of the Fourier coefficients of the canoni-
cal coordinates and momenta, Egs. (23) and (33). These
observations will be used below.

III. TRUNCATION OF THE MODES

Recall that our aim in this paper is the construction of
a finite-dimensional approximation of the shallow-water
equations, suitable for numerical study, that possesses a
large number of conserved quantities, analogous to the
&(n) for the full shallow water equations. We will do this
in two steps. First we will construction a finite-
dimensional group that plays the role of the particle rela-
beling group for the truncated finite-dimensional system,
and second, we will construct a Hamiltonian for the trun-
cated system that is invariant under the action of the
finite-dimensional symmetry. The generators of the sym-
metry will then be conserved by the truncated system and
will therefore be analogs of the {(n). Moreover, since the
finite-dimensional symmetry group, which will turn out
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to be SU(N), approximates the particle relabeling group
in a sense which we will discuss, the conserved generators
for the truncated theory will approach the &(n) as
N— 0.

A. Algebra of the truncated modes

Our truncation of the particle interchange algebra is
motivated by the idea of limiting the number of Fourier
modes, but a simple cutoff on the components of the vec-
tors n does not respect the Poisson brackets. Suppose we
limit each component of our integer vectors n=[n,n,]
to —M =n, =M, then the presence of the sum vectors
n-+m in the Poisson brackets of {(n) means that vectors
in the range are mapped out of the range. To address this
we note that restricting vectors in label space to a box of
size L X L and making the Fourier transform, we have in
effect mapped our space onto a torus by implicitly identi-
fying the sides under the assumption of periodicity. If we
were to formalize this periodicity by requiring all sums of
integer vectors to lie within the range [ —M,M] by a
modulo or remainder operation, we would still need to
deal with the terms nXm that appear in all the Poisson
brackets with {(n). These are the so-called structure con-
stants associated with the group properties of particle re-
labeling invariance, so it is suggestive that modifying
them as well would be required to make a consistent
theory of truncated Fourier modes. In particular one
must address the Jacobi identity which provides the
statement that the operations in question do close to form
a group.

The set of operations which provides a consistent trun-
cation of the modes comes from changing the definition
of the Fourier components of g (r,?) to

1 M

Sy(m)=— 3

sin[kynXm]P,(m)Q,(n—m), (35)
KN m=—-M

where N =2M +1, all components n,,m,, ... are re-
stricted to [—M,M], and ky=2w/N. In the limit
M — o, or equivalently N— o, namely as ky—0, this
definition of the potential vorticity is the same as in the
original Fourier transform. The definition of the Fourier
coefficients for the Jacobian is modified to

M
pym)=5 3

—l—sin[KNm’Xm]Q(m)
m,m'=—M KN

XQ(mI )Sn,m+m’
M

= 2

L Sin[kynXm]Q,(m)Q,(n—m) . (36)
m=—M KN

The definitions of the Q(n) and P(n) are unchanged and
the Poisson brackets between them are still

{Qa(n)’PB(m)}=8a350,m+n ’ (37

with the rule that vector components out of [ —M,M] are
mapped back into the range.

Now the Poisson brackets among the {y(n) and the
other variables Q,(n), P,(n), and py(n) are found to be

M

(Ey(n),Qu(m)}=—— 3

sin[kynXm’]
Ky m=—-M

XSO,m’+mQa(n“m’)

=~1—sin[KNn><m}Qa(n+m) , (38)
Ky

and

{&y(n), Py (m)} Z%sin[KNnXm]Pa(n—f—m) , (39
N

{{,‘N(n),pN(m)}=-'—c-1~sin[KNn><m]pN(n+m), (40)
N

[§N(n),§N(m)}Z%sin[KNnXm]gN(n—!-m). 1)
N

In deriving each of these Poisson bracket relations we
have used the trigonometric identity

sinlfa[mXm'—mXn])sin(a[nXm'])
+sin(e[nXm—nXm'])
=sin(a[nXm])sin(a [(n+m)Xm]), (42)

correct for an arbitrary (complex) constant a. For us
a=kKy.

This set of Poisson brackets defines a finite algebra
which is su(N) with the {y(n) as generators of
infinitesimal su(N) transformations. This statement is far
from obvious and we will verify it in detail later. For
now we note that the truncation of the Fourier modes
with the modification of the Poisson brackets provides a
consistent reduction from an infinite number of modes to
the finite number N. The critical issue in checking this
consistency is verifying that the Jacobi identity among
Poisson brackets is satisfied, and with the change of
structure constants from nXm-—(1/ky)sin[kynXm]
this is readily established.

Next we want to construct a Hamiltonian Hy, which is
invariant under this SU(N) and becomes the shallow-
water Hamiltonian in the limit N — . The truncated
Fourier coefficients are not the most convenient variables
in which to construct this Hamiltonian. This is in part
due to the form of the potential-energy term in the Ham-
iltonian (8), which assumes a rather simple form in terms
of the fluid particle positions Y(r,¢), but which would
look quite complicated if expressed in terms of the
Fourier coefficients of Y. This is due to the occurrence of
J ™1, which involves inverses of the r-space gradients of
Y. In any case, it is clear that, physically, the natural
variables in the Lagrangian representation are the parti-
cle positions rather than their Fourier coefficients Q,(n).
We had to introduce the Fourier coefficients to bring out
the algebraic structure of the particle relabeling symme-
try.

Interestingly enough, it turns out that in the truncated
theory, there exist natural variables analogous to Y,
which are far more convenient to work with than the
Fourier coefficients. In order to motivate the introduc-
tion of these variables, it is necessary to examine in
greater detail the interplay between the symmetry group
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and Hamiltonian structure for symmetric Hamiltonian
systems.

Perhaps the most important subclass of Hamiltonian
systems with symmetry is the one in which the symmetry
acts naturally on the configuration space of the system.
That is the “new” g¢’s are functions only of the “o0ld” ¢’s
under the operation of the symmetry. The action of the
symmetry on the full phase space is then determined by
the requirement that it lead to canonical transformations.
Our problem fits into this category, but before we analyze
the situation in our complicated case of interest, we con-
sider from this point of view a familiar example which
will serve as a guide to the reader. The reader well versed
in the subject of Hamiltonian systems with symmetry
may skip this section.

B. Illustrative example: The rotation group

Consider a single particle in a central force field. The
position of the particle is given by x=(x;,x,,x;) and
have canonical momenta p=(p,p,,p;). The Hamiltoni-
an is given by,

2
H(x,p)=—|¢+V(lxi). (43)
2m
It is clear that the symmetry group in this problem is the
rotation group in three dimensions SO(3) (we consider
only rotation without reflections). Concretely, SO(3) con-
sists of 3 X 3 orthogonal matrices of determinant 1. SO(3)
acts on the configuration space of the particle by the usu-
al rotations of three-dimensional space,

x—Rx (44)

for x€R?3 and R €SO(3). As we said before, the trans-
formation is now made to act on the full phase space, by
demanding that it be canonical (the precise requirement
is the differential form p-dx be preserved). This gives the
full symmetry action as

(x,p)—(Rx,Rp) . (45)

It is evident that the Hamiltonian (43) is invariant under
such a transformation, since R preserves lengths.

For our purposes it is important to establish the rela-
tionship between the infinitesimal generators of the sym-
metry, which are the conserved quantities, and the corre-
sponding infinitesimal generators of the group, i.e., the Lie
algebra of the symmetry group. This infinitesimal gen-
erators of the symmetry are precisely the three com-
ponents of the angular momentum,

L,=x,p3—x3p,,
L,=x;3p;—xp3, (46)
Ly=xp,—x,p, ,

and they are conserved

dL;
e ={L;,H}=0, 47)

where

{A,B}z_a_‘.‘i_a_B__aia_A (48)

is the usual Poisson bracket for functions 4 and B on
(x,p) space. The L; are generators of rotations in (x,p)
space by the same procedure by which the £(n) generated
the particle relabeling symmetry on the (Y(r),II(r))
phase space for the shallow water fluid. For example, let
0 denote the amount of rotation about the x, axis. The
appropriate rotation matrix is given by

cos@ —sinf O
R;(0)= |sin@ cos® O] . (49)
0 0 1

Again we generate the symmetry by considering a motion
in 6 with L, as the generator. That is, we consider the
differential equations

dx dp

de,de :({X,L3};{P,L3}) (50)

The solution is given by x(6)=R;(6)x(0) and
p(0)=R;(6)p(0). In this sense L; generates the symme-
try in question, i.e., rotation of the x and p vectors about
the third axis.

However, one may also discuss infinitesimal generators
of a group in a way that is entirely independent of any
configuration space or phase space the group acts on,
after all a group acts also on itself by the group multipli-
cation operation. In the theory of Lie groups, the vector
space of the infinitesimal generators of the Lie group is
called the Lie algebra corresponding to the Lie group.
For example, the infinitesimal generator of the rotation
given by R;(6) is defined by

9R;(6) (1) _01 g (51)
w = == N
Y0 oo 0 0 0

with @; and w, defined in a similar way. A general rota-
tion is generated by a linear combination

0, =a;0; , (52)

which generates a general rotation in the sense that the
matrix exponential R, =exp(w,) is the orthogonal matrix
that rotates by amount |a| about the direction defined by
the unit vector a/|a|. The Lie algebra corresponding to a
Lie group is usually denoted by lower case letters, e.g., we
denote the Lie algebra of SO(3) by so(3). Evidently so(3)
consists of arbitrary 3 X3 antisymmetric matrices, as seen
from Eq. (52).

In general, an N-parameter group has a Lie algebra
that is an N-dimensional vector space. For the rotation
group SO(3), a suitable basis for its Lie algebra are the
collection of matrices {w;,®,,w;}, linear combinations of
which generate general rotations as we have seen. In ad-
dition to being a vector space, however, the Lie algebra
inherits further structure from the group associated with
it. Conversely, this structure will essentially determine
the corresponding Lie group. This structure can be made
concrete by introducing the structure constants ;. of the
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Lie algebra. For a matrix group, if {e;,e,,...,ey} area
basis for the Lie algebra, then the structure constants are
defined through

leiej]1=cirer (53)

where [e;,e;]=e;e; —e;e; is the usual commutator of ma-
trices. A fact immediately worthy of note here is that the
commutator of a pair of Lie algebra elements belongs
again to the Lie algebra. For example, the commutator of
a pair of antisymmetric matrices is again antisymmetric.
Therefore the antisymmetric matrices form a Lie algebra,
which is the Lie algebra of the rotation group as we have
seen. The symmetric matrices, for example, do not form
a Lie algebra.

In terms of the o ; basis, the structure constants of the
rotation group can be readily computed and are given by
Cijk =€k, where €, is the completely antisymmetric
symbol in three dimensions. Thus

[0,0;]=€ 0 . (54)

The structure constants, even though they are basis
dependent, are sufficient to identify the underlying Lie
group [with the proviso that Lie groups that are different
only at the global level, such as SO(3) (rotations without
reflections) and O(3) (rotations with reflections), will have
the same Lie algebra and same structure constants].

Given these ideas, it seems reasonable therefore to
define a vector-space isomorphism T relating so(3) and
the space of angular momentum functions (angular mo-
menta about all possible axes) given by

T(w,)=a;T(w;)=a,L,=L, . (55)

This association clearly is an isomorphism of vector
spaces, but it is more than that. As we saw, the angular
momentum functions generate certain canonical transfor-
mations (rotations) on (x,p) phase space. Clearly this is a
three-dimensional subgroup of the (infinite dimensional)
group of canonical transformations on phase space. The
association of vector spaces w,«>L, respects the group
structures in SO(3) and the subgroup of canonical trans-
formations generated by the angular momenta L}, since

because {L;,L;} =€ Ly.

This type of situation is not peculiar to the rotation
group, but to all Hamiltonian systems with a continuous
symmetry group, where the symmetry group acts natural-
ly on the configuration space. This is true both for the
shallow-water equations and their SU(N) symmetric
truncation. We will now proceed to examine the situa-
tion in this problem.

C. A more detailed look
at the particle-relabeling symmetry

In the preceding sections, we discussed the potential
vorticity algebra as generated by the {(n) in the continu-
um and by the £y (n) in the truncated versions of shallow
water theory (of course we have not yet written down the
truncated version of the shallow-water equations; this
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will come later on in the paper). Clearly {y(n) and §(n)
are analogous to the angular momenta L; in the case of
the rotation group discussed above. In order to proceed
further, we must now find the corresponding Lie algebra
elements, i.e., quantities analogous to the matrices w j in
the case of SO(3).

In the continuum case we almost gave an answer to
this question already, but we will now put these matters
into the proper context and discuss this case in detail be-
fore we go on to the truncated theory. As we discussed
previously, the symmetry of interest in the continuum
case is the particle interchange symmetry. These are
mappings of the periodic square into itself that preserve
area. Such mappings are generated by vector fields of the
form given on the right-hand side of Eq. (27), which are
the divergence-free vector fields. Divergence-free vector
fields generate area-preserving mappings in the sense that
for v(r) divergence free dv; /dr; =0, the solution of the
differential equation

dr _
de

considered for all initial conditions in the region of in-
terest (the periodic square in our case), is a one-parameter
family of area-preserving maps of the region into itself,
parameterized by €. In two dimensions, we are lucky in
that a divergence free vector field can be written in terms
of a scalar “stream function”; let us label the divergence-
free vector field by the corresponding stream function ¢

v(r), (57)

i _ oY
vy =€ . (58)
J
In general, in order to examine the group structure for a

group of transformations on a region, we look at the Lie
bracket of the generating vector fields. This is defined by

[u,v]=u-Vv—v-Vu. (59)

The Lie bracket measures in the infinitesimal sense, the
noncommutativity of the flows generated by u and v. For
divergence-free vector fields in two dimensions, one can
readily show that

[uguy]= —upyy), (60)

where we have used the notation introduced in Eq. (14).
This shows that the correspondence established between
divergence-free vector fields and functions (i.e., stream
functions) in two dimensions via Eq. (58) respects the
algebraic structure that vector fields are endowed with
via the Lie bracket and the one for functions, given by
the Jacobian or two-dimensional Poisson bracket. In
studying the algebra of the area-preserving mappings of
the periodic square into itself, we may therefore consider
the infinitesimal generators to be periodic functions 1,
which give rise to the mappings via the flow of the corre-
sponding divergence-free vector field (58). (The reader fa-
miliar with Hamiltonian theory will recognize that we are
simply speaking of canonical transformations on two-
dimensional phase space. What may be a bit confusing
here is that we are viewing these transformations as the
symmetry group of a much larger Hamiltonian system,
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namely the shallow-water equations.)
Any such 1 can expanded in a basis

oo

Pr)= 3

n=-—oo

¥y > (61)
with

¢n=—% exp(ikn-r) . (62)
K

This normalization is chosen since it results in

{wnﬂ/}m}r:nxmtanm 4 (63)

which is to be compared to the potential vorticity algebra
in Eq. (31). The algebraic structures are exactly the same
and we have therefore exhibited the analogues of the w;
for angular momentum theory. That is the analog of the
correspondence

w;<>L; (64)
for the particle relabeling group is
Yp—6(n) . (65)

The Jacobian in Eq. (63) plays for the ¥,, the role that the
commutator bracket played for the w; in Eq. (54). This is
another reason why we used a bracketlike expression for
the Jacobian.

D. The generators §y(n)
and their relationship to the group SU(N)

Next we look at the SU(N) truncated theory. Since
our symmetry group is now finite dimensional, it is not
surprising that the analog of the w; for the rotation group
will again be matrices. These matrices will form a basis
for the Lie algebra of SU(N), which justifies our giving
this name to the symmetry of the truncated equations.
The matrices in question were introduced by ’t Hooft [12]
and have been analyzed recently by various authors
[3,6,13] and references therein.

These N XN matrices, for N odd, which we denote by
f’n, are N2 in number and are indexed by the integer pair
n=(n,n,). The T are defined in terms of a pair of ma-
trices g and A, and a phase w, which in turn are defined
by

o= exp(4mi/N) ,

0w O -+ 0
g=|. o . , (66)
\.0 wN-“l
01 0 -0
00 1 0 0
0 1 :
h= 0
00 1
10 0
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The Tn are then given by

7\_," %wnlnzﬂgnlhnz (67)
Note that this definition holds for arbitrary integers n,
and n, (including ne/gatlve 1ntegers) however, since
gN—hN—I we have T, ,y= T for an arbitrary pair
=(a;,a,) of integers. Therefore on the integer lattice
n=(n1,n2 ), we may take n from any N XN cell in order
to define the N2 matrices 7,. We will take
—M=n,<M, a=1,2, that is, the N XN cell centered at
the origin with N =2M +1.
From the definition (67) of the T matrices, one can
show that they satisfy the followmg commutation rela-
tions:

2

(7., 7 1= sin[ky(nxm)]T, .0 (68)

Ky
with «y=2m/N, which is precisely the same algebraic
structure as the truncated potential vorticity algebra

{§N(n),§N(m)}=7(-1—sin[KN(n><m)]§N(n+m). (69)
N

Therefore we have now found in the ?n the counterparts
of the w; for SO(3) and 3, for the particle relabeling
group; and we establish the correspondence

T —ty(n) . (70)

We reiterate that the T"n are a collection of N? matrices,
for N odd, defined in Eq. (67), while the {(n) are a col-
lection of N2 functions on (truncated) phase space, given
in Eq. (35).

We now come to the question of why the algebra of the
T , given in Eq. (68), is that of SU(N). SU(N) consists of
the unitary matrices of determinant 1 That is, for
UGSU(N), we have OT0=I and detU—l where the
dagger denotes the transpose of the complex conjugate.
A member A4 of su(N), the Lie algebra of SU(N), must
therefore satisfy exp( A)ESU(N). It can be readily
shown that this is t/r\ue, if and only if A is traceless and
anti-Hermitian, tr( 4 )=0 and A"=— 4. The dimension
of su(N) is N 2L 1, since a general complex N X N matrix
has 2N? parameters on which the anti-Hermiticity condi-
tion places N2 constraints, and tracelessness provides an
additional constraint.

Now the collection Tn, of N? matrices, are linearly in-
dependent and traceless for n#(0,0). However, ?(o,m
plays a trivial role in the algebra (68), since it commutes
with all the ?n [corresponding to the fact that
£x(0,0)=0 identically]. Therefore if the 7, for n#0
were anti-Hermitian, they would form a basis for the Lie
algebra of SU(N). However, the 7, are not anti-
Hermitian. Instead, they satisfy the following relation
under the Hermitian conjugate:

P=—7_,. 71

As we shall now argue, this is precisely the relationship
we would want. The reason has to do with the require-
ment of reality on our dynamical variables and other
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quantities of interest. The Fourier coefficients Q,(n) and
P, (n) must satisfy Q5(n)=Q,(—n) and
P%(n)=P,(—n), where the asterisk denotes complex
conjugation, in order for the particle positions and mo-
menta (Y,II) to be real. From this, and the definition
(35) of the ¢&y(m), we can readily deduce that
Env(n)=—¢y(—n). Since we want real conserved quanti-
ties, we form the real combinations of the {(n), given by

En(m)—&y(—m), i[Ey(n)+Ey(—n)]. (72)
Forming analogous combinations of the fn, we have
T.—-T_,, i(T.+T_,), (73)

which are N2—1 linearly independent, anti-Hermitian,
and [for n#(0,0)] traceless matrices. Thus they do form
a basis for the Lie algebra of SU(N). We could write the
brackets (69) and (68) in terms of these real and antiher-
mitian combinations, respectively, but we will refrain
from doing so as it is much more convenient, algebraical-
ly, to work with the {(n) and Tn. This is analogous to
the fact it is algebraically simpler to expand functions on
the periodic square in term of complex exponentials rath-
er than sines and cosines.

E. Natural variables
for the SU(N) symmetric truncation

The preceding discussion would be of little practical
value, except that it leads to natural variables for the
SU(N) theory. The procedure used is not a standard one
in Hamiltonian theory, as far as the authors are aware.
The goal is to construct quantities analogous to the parti-
cle positions and momenta (Y,II) in the SU(N) truncated
theory. When we examine the Fourier decomposition of
Y in Eq. (20), we observe that it may be looked at as a
sum of generators of the particle relabeling symmetry,
since this is one way to look at the Fourier basis func-
tions, as we saw. Written in this form, the particle posi-
tions are given by

2
Ya(r’t):—%zga(nat)d}n ’ (74)

with 1, just a scaled complex exponential given in Eq.
(62). Now as we observed in Sec. III D, in the truncated
theory the matrices ?n play the role of the 3,. This
motivates the introduction of the following anti-

Hermitian matrices ?a and ﬁa:
Vo=V /m 3 0 ()T, , (75)
=V« /73 P, ()T, , (76)

with the sums now in the range —M <n, <M. They are
anti-Hermitian because of the behavior of the Fourier
coefficients and the 7, under complex conjugation and
Hermitian transposition, respectively. Thus )%a and ﬁa
are linear combinations of the Tn matrices, with the
coefficients being the truncated Fourier coefficients. The
normalizations are chdsen to simplify the formulas that
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follow, and are of no special significance.

We may think of Eq. (75) as defining a linear transfor-
mation relating the truncated Fourier coefficients Q,(n)
and elements of the matrix ?a. These matrix elements
we will denote by ¥,(j,,j,), where 1<j, <N, for
a=1,2. This linear transformation is invertible since the
T, are linearly independent. Moreover, Q,(n) can be

recovered explicitly from ?a by the formula,
Q. (n)=—=2V'i /mte(Y, T_,) , (77)

this follows from the following orthogonality relation of
the T, under the trace inner product for matrices,

T
30 —m -
KN

te( T, T)=— (78)
These observations of course apply to ﬁa as well.

We see that instead of the truncated Fourier
coefficients Q,(n), P,(n), and —M =n_ <M, we may use
the four anti-Hermitian matrices Ya,ﬁa,aZ 1,2 as
dynamical variables. We shall soon see that these are far
more convenient than the truncated Fourier coefficients.
Before we proceed, we note that instead of 4N X N anti-
Hermitian matrices, we may use two general complex
matrices ¥ and [1 defined by

Y=9,+i¥,, fi=M,+ifl,, (79)
from which ?a and ﬁa can be recovered through

a

P, =1P—1, ?2=2ii(f/+?f), (80)

with a similar formula for ﬁa. In what follows, the use of
¥ and 11 will give our formulas a somewhat more com-
pact form.

Recall that our aim is to find an approximate Hamil-
tonian that is invariant under the action of the SU(N)
symmetry. This Hamiltonian will then produce a trunca-
tion of the shallow-water equations which preserves the
N2—1 generators {y(n). The matrix formulation in
terms of ¥ and 1 is ideally suited to this task.

We examine now the infinitesimal action of the genera-
tors {x(n) on our new phase-space coordinates ¥ and 1.
We therefore consider

(P.exm)=V'ky /7 3 (Q(m),Ey(m)} Ty, (81)

where we have defined Q(m)=Q;(m)+iQ,(m). Using
the Poisson bracket (38) and the commutation relation-
ship (68) for the f’n matrices, we arrive at the following
remarkable formula:

(P.enm))=[7_,,7]. (82)

Now consider the following quantity:

&= caty(n) . (83)

If ¢¥ — —c_,, then the expression for { above represents
the most general real generator of our SU(N) symmetry.
We then have, using Eq. (82),
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(v,6y=14,7], (84)
where
A= c,T_, (85)

is easily seen to be anti-Hermitian.

Thus the infinitesimal action of SU(N) on our
configuration space as coordmatlzed by the matrix Y is
given by ?—»[ 7\ ?], where 4 is an arbitrary anti-
Hermitian matrix. In order to obtain the full symmetry
operation corresponding to this infinitesimal action, we
must solve the differential equation

dY

4,7]. 86
i ] (86)
The solution is given by

Yo =070 ", (87)

where U=exp(64). O is unitary since 4 is anti-
Hermitian. Additionally, ) may be taken to be traceless,
since the traceless matrix 4 — (trA)I/N results in the
same differential equatlon above as A itself. This shows
that we can take U €SU(N). Equation (87) then gives a
very concrete form to the symmetry operation of SU(N)
on our configuration space,

Y00, (88)

From Eq. (39), we see that the operation of the symmetry
on Il is exactly the same,

n-ovo—"'. (89)

Moreover, since the infinitesimal action of the generators
{n(n) on the py(n) [which are modified, truncated
Fourier coefficients in the Fourier expansion of the Jaco-
bian (36)] is the same as the action on the Q,(n) and

P,(n), Eq. (40), it will be useful to define a matrix JN
given by
Fy=—1 90)
N imN ’

where the normalization is chosen for the future conveni-
ence. Clearly J, n 18 going to play the role of the Jacobian
J for the truncated theory. Note that Jy is Hermitian.
The action of the SU(N) symmetry on J, n is of course
again

Iy—07,071. 91)

F. The SU(N) symmetric approximate Hamiltonian

We will now use the observations of the previous sec-
tion in order to construct a Hamiltonian that approxi-
mates the full shallow-water Hamiltonian, given in Eq.
(8), and is at the same time an invariant of the SU(N) ac-
tion.

We exhibit first a class of invariant functions of ¥, 11,
and J, > and then choose a member of this class that ap-
prox1mates the full shallow water Hamiltonian. Let
F=F(?,?' a,0%7, ) by any analytic function of its ar-

guments, then under the SU(N) action described above, F
becomes

F(, 200007 >Fov0-, 0970,
xOno-Lonto-, 05,07
=0F(?,9",0,0",7,)0! (92)

where the last equality is seen to hold by expanding F in a
Taylor series in its arguments. This shows that

trF (9,97, 1,07,7,) is an SUN) invariant , (93}

which follows from the cyclic property of the trace. Our
SU(N) invariant Hamiltonian can be chosen from this

class. Two further results that we will need are the fol-
lowing:
(i~ [|102%d%, N—o, (94)
and
2 A
LTtr(J,(,")~fJ'”d2r, N oo . (95)

The reader will understand that these are special cases of
a class of formulas relating integrals of powers of quantl-
ties Y, II, and J, to traces of powers of the matrices .11,
and J, N> @ N —co. In particular the results above may
be proven by expressing the integrals on the right-hand
sides in terms of the Fourier coefficients and comparing
with the result of expressing the left-hand sides in terms
of the truncated Fourier coefficients. The only tricky
step in this computation involves the use of an identity
for a product of T, matrices. We record this identity here
for the reader interested in the details of these calcula-
tions

Tn,Tn2 . j\"nk
. k-1
i
= II explixy(ngXn, ]Tn+ 4n
2Ky ap Pk
a<f

(96)

Now in Eq. (94), the right-hand side is the kinetic ener-
gy for the shallow-water equations, so we have a suitable
SU(N) 1nvar1ant approximation for the kinetic energy,
given by tr(fIf1"). In order to approximate the potential
energy in the shallow-water Hamiltonian (8), we observe
that from Eq. (95), we may write

2

%tr(F Iy~ [F(hd*, N—o 97
provided F is an analytic function of its argument. We
will of course choose F(x)=x ~!. The reader may object
that this function is not analytic, but actually it is analyt-
ic everywhere, except at x =0, and this precisely is the
value that the Jacobian must not assume, on both physi-
cal and mathematical grounds. Therefore, in order to ap-
ply Eq. (97) we may, for example, think of expanding J
about some nonzero average value. This then gives
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2
Loy~ [17 1, N, ©8)

which gives us the following SU(N) invariant approxi-
mate Hamiltonian:

V(P 20.11, ﬁ“)—u(ﬁﬁ*)+ tr(J . (99)

The ¥ dependence of H N occurs through 7 ~» and in fact
one can show, using Egs. (36), (68), and (90), that JN is
given by the following commutator:

2
.?N=1L]l£—[i>, 1. (100)

G. Poisson brackets and the equations of motion

The truncated equations of motion corresponding to
our SU(N) invariant Hamiltonian are given by

D vmy, Lonm,,

with Hy given by Eq. (99). At this point we know the
Poisson brackets in terms of the truncated Fourier
coefficients Q,(n) and P,(n), which are canonical. How-
ever, since the transformatlon between the truncated
Fourier coefficients and the elements of the ¥ and fI ma-
trices is linear, we may readily compute the Poisson
bracket relationship among the elements of these ma-
trices, for example,

{P(j),M(k)}

=2 2

n a=1,2

(101)

av(j) afl(k)
3Q,(n) 3P,(—n)

_ ofik)  avQ)
3Q,(n) 3P,(—n)

(102)

since Q,(n) and P,(—n) are canonically conjugate. j
and k above index the elements of the ¥ and 1 matrices
above, j=(j,72),1=j, <N, and similarly for k. The ac-
tual computation is tedious and involves detailed use of
the properties of the f matrices. We just present the re-
sults which show, not surpr1s1ng1y, that the elements of
the ¥ and fI matrices satisfy essentially canonical Poisson
bracket relationships

(PG, AT} ={ P, Ik} =5, (5, «. ,

8,185,k (103)

(7(j),Mk)}=

Of course the brackets involving the elements of ¥ only,
or the elements of only, also vanish. Using these
bracket relations, we can write the truncated equations of
motion more concretely as

(104)

d¥(jy,jp) _  8Hy 105)
dt aft'(j,,7,)

dfi(jy,j,) _ dHy 106)
dt 3% yi)

The differentiation in Eq. (106) is a little tricky and must
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be performed with care. The results can again be neatly
expressed in matrix form, giving the following SU(N)
symmetric truncated equations of motion:

aY o dft_gmy

2
dt ’ dt 2L2 [JN ’?]

(107)
with J, n given in Eq. (100). The evolution of the truncat-
ed Fourier coefficients may now be obtained by solving
the coupled ordinary differential equations for the ¥ and

matrices given above and using the trace formula (77)
relating ¥ and Q,(n) and its analog for f and P,.

H. Conserved quantities
of the SU(N) symmetric theory

Our construction of the SU(N) symmetric truncated
shallow-water equations (107) guarantees that they
preserve the infinitesimal generators {y(n) of the SU(N)
symmetry. It is illuminating, however, to directly verify
the conservation laws from the equations of motion. This
is done most elegantly by constructlng a matrix gy like Y,
fl, and 7, ~»> but now using the {y(n) as coefficients for the

', Mmatrices

3
n
Using the definition (35) of the {y(n) and the commuta-
tion properties of the 7\"“, one can show that @, defined
above is expressible in terms of commutators of the ¥ and
matrices

ay=1( 7,0+ 250)) . (109)
Using this expression it is a simple matter to show direct-
ly from the equations of motion (107) that

dqy
i o, (110)
which shows that d¢y(n)/dt =0 for each n, since the T,
are time independent and linearly independent. Alterna-
tively, it is also easy to see that @, is traceless
and anti-Hermitian, therefore (110) does indeed represent
N?—1 conservation laws.

IV. SUMMARY OF THE MAIN RESULTS

We now put down the main results of this paper in one
place for the convenience of the reader. In doing this, it
is illuminating to write the equations and relations for the
shallow-water equations in parallel with the correspond-
ing results for the SU(N) symmetric truncated theory. In
order to bring out this parallel further, we define first the
complex functions Y and II on label space r as

Y(r,)=Y,(r,0)+iY,(r,1) ,
I(r,)=11,(r,t)+ill,(r,7) .

(111)

These are clearly analogs of the ¥ and f1 matrices in the
truncated theory. In terms of these variables, the contin-
uum shallow-water Hamiltonian (8) is given by
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H=1[d>»(II*+gJ "), (112)
where
J=é{Y,Y*}r. (113)

In the SU(N) symmetric truncated theory, the Hamil-
tonian is given by

2
HN=tr(ﬁﬁT)+£tr(./f§1) ’

114
AN (114)
where
2
Fe="N19,91. (115)

L4
The fundamental Poisson bracket in the continuum
theory is given by

(Y(r),IT*(r")}=8%r—1') , (116)
while in the truncated theory we have
: T —
(PGLIATR)} =8, 4 8 ¢, - (117)

This leads to the continuum equations of motion
(shallow-water equations)
Y oIl _ ig

o b 5T

—=={J74Y}, (118)

while the SU(N) symmetric truncated shallow-water
equations are given by

if:: ﬁzg"TN["—Z,?]‘

L <=8y (119)

In the decomposition into Fourier coefficients, we have
for the continuum variables

_i 0 @
Y=, > >

Q(n)explikn-r],

) - - (120)
H(r)=f > > P(n)exp[ikn-r],
ny=—o ny=—o
where we defined
Q(n)=Q,(n)+iQ,(n),
(121)
P(n)=P,;(n)+iP,(n) .
This gives the inverse formula
1 .
Q(n)—ffdzr Y(r)exp[ —ikn-r], (122)

with a similar formula for P(n). For the truncated vari-
ables we have the decomposition in terms of truncated
Fourier coefficients

— M M
Y=Vkk/m ¥ 3 owmf,,

n=—Mn,=—M

(123)

fier/ 27 M M R
KN/77' 2 2 P(D)Tn,

ny=—M n,=—M

(124)

where N =2M + 1. Here we have the inverse formula

Q(n)=—2V«k} /mr(¥T_,), (125)

with a similar formula for P(n). For the continuum
theory we have a real, conserved field, the potential vorti-
city, given by

g(r)=1({ILY*} +{II*,Y},) . (126)

In the truncated theory, we have a conserved traceless,
anti-Hermitian matrix given by

av=1( 70N+ [2T A . (127)

The relationship between ¢(r) and gy may be seen

through their decomposition in terms of Fourier
coefficients
2 2 o © .
q(r)=( 7T4) > >  &(n)explikn-r]  (128)
L ng=-—o n2=7oo
and
3
K M M
Iv=—" 3 3 ymf,, (129)
™ n=—Mn,=—M

with {(n) given in Eq. (23) and {y(n) defined in Eq. (35),
the important fact being that £y(n)~¢(n) as N— . So
that the conservation laws of the truncated theory ap-
proach those of the full equations as N becomes large.

V. COMMENTS:
USES OF THE SU(N) THEORY

The main achievement of the mode truncation given
here of the shallow-water equations in planar geometry is
that the truncated theory preserves all parts of potential
vorticity conservation consistent with the finite number
of modes of the truncated continuum fluid dynamics.
This makes the symmetric truncation provided here quite
attractive for use in more realistic models based on shal-
low layers, since the conserved quantities of the full con-
tinuum theory are preserved as well as possible by the
finite-dimensional approximation to the fluid.

In integrating the inviscid, truncated equations of
motion for atmospheric or ocean dynamics, it is impor-
tant to preserve the full implications of both the SU(N)
symmetry and the Hamiltonian structure. The latter is
guaranteed by new developments in integrating Hamil-
tonian systems which go under the name of symplectic in-
tegration schemes [14—18]. In order to extract the full
implications of the symmetry of particle interchange [in
its mode truncated SU(N) appearance] one must extend
these symplectic integrators to respect the SU(N) symme-
try as well. In these papers it is clearly demonstrated
that symmetric-integration methods respecting the Ham-
iltonian dynamics leads to significantly improved numeri-
cal results especially for integrations over long times. It
is just the latter time scales which are of interest in many
contemporary geophysical fluid dynamical problems.

The methods of this paper are extended in two reason-
ably straightforward ways. One is to spherical geometries
[6] with or without rotation. The more interesting exten-
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sions are to additional dynamics of geophysical interest.
The quasi-two-dimensional dynamics of internal waves
and surface gravity waves also possess particle inter-
change symmetries, and in the finite-dimensional version
of these flows, we will also find the methods exhibited
here to be of value. We plan to report on both these de-
velopments in the near future.

With the variables identified here, one can add friction
or viscosity to the evolution equations in the usual more
or less ad hoc fashion. The conserved quantities of the
inviscid theory will, of course, cease to be precisely con-
served by the dynamics. Nonetheless, since the inviscid
approximation is so good on many large scales of geo-
physical interest, the symmetries [Hamiltonian and
SU(N)] will continue to play an important role in
describing observables of significance.

Finally there is an important technical problem still to
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be solved in the full development of the theory we have
presented here. We have given the SU(N) symmetric
truncation of the shallow-water equations in Lagrangian
formulation. While equivalent to a Eulerian version of
the same theory, it is not always the best framework in
which to perform accurate and efficient numerical work.
The development of the Eulerian version of the SU(N)
symmetric, finite-mode truncation of the shallow-water
theory remains as an interesting challenge. Again we
hope to report on this development in the near future.
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